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A B S T R A C T

Classical computational biomechanical approaches are costly and require a high level of expertise, often limiting 
their clinical application. A data-driven Machine Learning (ML) framework can serve as an effective alternative 
for disease diagnosis and prediction. This study aimed to develop an ML-based modeling approach integrating 
Quantitative Computed Tomography-based Finite Element Analysis (QCT-based FEA) to assess fall-induced hip 
fracture probability and probable facture locations in an elderly individual. Specifically, this study focused on 
predicting patient-specific hip fracture risk using fracture risk index (FRI), calculated on the basis of 1st and 3rd 

principal strains, and visualizing strain distributions in the proximal femur by generating surrogate FE models via 
supervised CatBoost model. The training dataset, comprising clinical, anatomical, and mechanical (loading) 
features, was obtained from QCT image data and QCT-based FEA, which also provided the FRI and strain dis-
tributions as targets. The optimized CatBoost model demonstrated 76% accuracy with an AUROC of 0.81 in 
fracture risk prediction, as well as correlation coefficients of 0.73 for the 1st principal strain and 0.76 for the 3rd 

principal strain in the surrogate FE models for visualization. Although trained on a limited dataset, this study 
highlights the efficacy of ML-based surrogate modeling in the QCT-based FEA process for predicting hip fracture 
risk and visually identifying fracture locations.

1. Introduction

Hip fracture, also known as femoral fracture, is one of the major 
public health concerns among the elderly population in the United 
States and worldwide. It can lead to permanent disability as well as 
substantial mortality (Cooper, et al., 2011). Approximately 1.3 million 
hip fractures occur annually, and they are associated with nearly 
740,000 deaths worldwide (Johnell & Kanis, 2004). This worldwide 
annual number is projected to exceed 6 million by the year 2050 
(Kannus, et al., 1996). In the USA, more than 300,000 patients with hip 
fractures are hospitalized annually, and 90% of these fractures result 
from a simple fall (Aschkenasy & Rothenhaus, 2006). Predicting the 
elevated risk of hip fractures in elderly people is crucial for the devel-
opment of personalized preventive measures, given the rising incidence 
of such fractures, and thereby reducing socio economic burden associ-
ated with them. Currently, fracture risk assessment tool–FRAX (Kanis, 
Johnell, Odén, Johansson, & McCloskey, 2008), and Bone Mineral 
Density (BMD) measurement using Dual-Energy X-ray Absorptiometry 

(DXA) (Adams, 2013; Albertsson, Mellström, Petersson, Thulesius, & 
Eggertsen, 2010; Luo, Ferdous, & Leslie, 2011) are the most commonly 
used predictive methods, but these methods suffer from some limita-
tions. For example, FRAX is a population dependent method, and per-
forms less accurately for inter-racial groups. Moreover, it may lead to 
overestimation and underestimation of BMD depending on bone size 
(Ferizi, et al., 2019). Most importantly, these methods ignore the impact 
of fall and associated mechanisms that mainly trigger hip fracture.

Finite Element Analysis (FEA) has been extensively used as a classical 
scientific computing tool to model and analyze biomechanical phe-
nomena such as analyzing mechanics of the cardiovascular system, he-
modynamics, design and modeling of implants, orthodontics, surgical 
procedures, and many others (Eshghi, Hojjati, Imani, & Goudarzi, 2011; 
McCulloch, Guccione, Waldman, & Rogers, 2020; Monteiro, Dal Piva, 
Tribst, Borges, & Tango, 2018; Post, et al., 2015; Singh, Mogra, Shetty, 
Shetty, & Philip, 2012). Quantitative Computed Tomography-based FEA 
(QCT-based FEA) is considered an accurate and effective method for 
fracture assessment because it considers bone density, femur 

* Corresponding author at: Dept. of Mechanical Engineering, 238 E Lewis St., Lafayette, LA 70508, USA.
E-mail addresses: rabina.awal433@gmail.com (R. Awal), mahmudanaznin@cse.buet.ac.bd (M. Naznin), tanvir.faisal@louisiana.edu (T.R. Faisal). 

1 Current Affiliation: SLB, 23400 colonial parkway, Katy, TX 77493, USA.

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

https://doi.org/10.1016/j.eswa.2024.125916
Received 19 January 2024; Received in revised form 2 November 2024; Accepted 23 November 2024  

Expert Systems With Applications 264 (2025) 125916 

Available online 26 November 2024 
0957-4174/© 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies. 

mailto:rabina.awal433@gmail.com
mailto:mahmudanaznin@cse.buet.ac.bd
mailto:tanvir.faisal@louisiana.edu
www.sciencedirect.com/science/journal/09574174
https://www.elsevier.com/locate/eswa
https://doi.org/10.1016/j.eswa.2024.125916
https://doi.org/10.1016/j.eswa.2024.125916
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2024.125916&domain=pdf


morphology, and loading effect (Aldieri, Curreli, Szyszko, La Mattina, & 
Viceconti, 2023; Aldieri, et al., 2022; Bettamer, 2012; Faisal & Luo, 
2017; Grassi, et al., 2023; Rui Zhang, 2014; Yang, Palermo, Black, & 
Eastell, 2014) and provide patient-specific prediction of fracture prob-
ability by analyzing the strength of femur (Black, et al., 2008; Dragomir- 
Daescu, et al., 2011; Engelke, van Rietbergen, & Zysset, 2016; Memiş, 
Varlı, & Bilgili, 2022). Despite its high fidelity, the application of QCT- 
based FEA has been limited in the clinical domain due to the high de-
mand for computational resources, expensive software requirements, 
and the need for skilled experts. However, recent advancements in 
Machine Learning (ML), Deep Learning (DL), and Artificial Intelligence 
(AI) suggest that ML techniques could be a promising alternative to 
classical QCT-based FEA. Therefore, we propose using supervised ML to 
develop data-driven surrogate models that can efficiently and accurately 
predict subject-specific hip fracture risk.

Data-driven, ML-based models applied clinically for disease diag-
nosis (Ambale-Venkatesh, et al., 2017; Islam & Nahiduzzaman, 2022; 
Kourou, Exarchos, Exarchos, Karamouzis, & Fotiadis, 2015; Osareh & 
Shadgar, 2010; Sajjad, et al., 2019; Sultana, Naznin, & Faisal, 2024; 
Weng, Reps, Kai, Garibaldi, & Qureshi, 2017) and injury prevention 
(Iliou, Anagnostopoulos, & Anastassopoulos, 2014; Kong, et al., 2020) 
demonstrated promising results. ML has been used in various orthopedic 
applications, including fracture detection (Kim & MacKinnon, 2018; 
Lindsey, et al., 2018; Olczak, et al., 2017; Urakawa, et al., 2019), bone 
tumor diagnosis (Do, Langlotz, & Beaulieu, 2017), and osteoarthritis 
grading (Tiulpin, Thevenot, Rahtu, Lehenkari, & Saarakkala, 2018; Xue, 
Zhang, Deng, Chen, & Jiang, 2017). Liang et al. (Liang, Liu, Martin, & 
Sun, 2018) developed patient-specific models of stress distribution in 
the aorta using ML algorithms, with FE model data as the input and 
aortic wall stress distribution as the output. Madani et al. (Madani, 
Bakhaty, Kim, Mubarak, & Mofrad, 2019) created a surrogate finite 
element model using ML to replicate stress distribution in the aortic wall 
for patients with atherosclerosis. This model learns the correlation be-
tween input parameters such as tissue geometry, composition, and 
arterial pressure, and the resulting stress distribution. These instances in 
the biomechanical domain highlight the potential of machine learning 
to develop surrogate FE models, providing patient-specific estimates of 
system responses.

Krogue et al. (Krogue, et al., 2020) applied ML techniques to radio-
graphs to classify hip fracture categories and automate the identification 

process to reduce diagnostic error. Artificial Neural Networks (ANNs) 
have proven effective in constructing predictive models for assessing the 
risk of hip bone fractures in elderly individuals, both female and male 
(Liu, et al., 2015). Ferizi et al. (Ferizi, et al., 2019) conducted a 
comprehensive study to predict osteoporotic bone fractures, comparing 
fifteen ML-based classifiers using Magnetic Resonance Imaging (MRI) 
data. However, these ML/DL models have primarily been used to detect 
and classify fractures that have already occurred. Therefore, the over-
arching goal of this work is to assess the probability of fracture risk in 
individuals before a fracture takes place using ML algorithms in 
conjunction with FEA. In this work, the Categorical Boosting (CatBoost) 
algorithm was selected due to its more accurate performance, automatic 
handling of missing values in a dataset, and lower computational time 
compared to other models such as logistic regression, Support Vector 
Classifier (SVC), Extreme Gradient Boost Model (XGBM), Random Forest 
(RF) and Decision Tree (DT), which were tested in-house (Awal et al., 
2025) before finalizing the model selection. Additionally, CatBoost can 
handle both numerical and categorical features without requiring 
conversion.

To develop the data-driven modeling approach for assessing patient- 
specific fracture risk, the first objective of this work was to conduct QCT- 
based FEA to generate target values—strain and Fracture Risk Index 
(FRI)—for training the CatBoost model. The second objective was to 
predict fracture risk using a binary classifier, and the final objective was 
to predictively visualize strain distributions in the femur to qualitatively 
and/or semi-quantitatively identify potential fracture location.

In this paper, Section 2 outlines the methodology of the study, 
including the detailed steps of each objective. Section 3 presents the 
outcomes of the study, demonstrating the performance of the models 
and their comparison. Section 4 provides a discussion, followed by the 
conclusion.

2. Materials and methods

The proposed ML pipeline was primarily built upon three major 
modeling steps (Fig. 1). The detail description of all these steps has been 
organized in sections 2.1 to 2.3.

Fig. 1. Schematic of designed ML pipeline.
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2.1. Dataset construction via QCT-based FEA

Most of the content in this section revisits our previous works (Awal, 
Ben Hmida, Luo, & Faisal, 2022; Awal & Faisal, 2024; Awal & Faisal, 
2021) to provide a clearer understanding of obtaining ground truth data 
using classical computational modeling (QCT-based FEA in this context) 
The workflow of QCT-based FEA started with a Digital Imaging and 
Communications in Medicine (DICOM) image dataset and culminated in 
displaying strain distributions in the 3D reconstructed proximal femur 
under various loading scenarios (Fig. 2) and the corresponding FRI.

2.1.1. Image acquisition using CT scan
A dataset of QCT images of 97 anonymous adults, without any 

identifiable information was considered in this study. The CT images of 
the patients in DICOM format was previously obtained from the Great- 
West Life PET/CT Center located at the Health Science Center, Winni-
peg, Canada following ethics approval. The QCT images were obtained 
by SIEMENS S5VB40B CT scan machine (Siemens Medical Solution, 
Malvern, USA) with acquisition and reconstruction parameters of 120 
kVp and 244 mAs, respectively, and an image matrix of 512 × 512 
pixels. The calibration of CT images was performed using a standard 
procedure, involving the use of a calcium hydroxyapatite calibration 
phantom (Mindways Inc., Austin, TX, USA) mounted during the scan to 

ensure accurate estimation of gray value. Table 1 provides a brief de-
mographic overview of the patient dataset.

2.1.2. Image processing to reconstruct 3D femur
The 3D femurs were meticulously reconstructed by semi- 

automatically segmenting the femur from the pelvis, tibial part, fat, 
and muscle using 3D Slicer (https://www.slicer.org/), a free open- 
source software designed for medical image processing and visualiza-
tion. The reconstruction process utilized the built-in functionalities such 
as thresholding, smoothing, and segmentation. To reconstruct only the 
proximal region, we considered approximately half of the femur, about 
220 mm from the superior point on the femoral head (Fig. 3). The 
resulting 3D model was exported to the FEA solver(s) in.STL format for 
FE simulation.

2.1.3. Meshing of 3D femur
The 3D femur model was meshed using 4-node tetrahedral elements 

(Fig. 3b) with HyperMesh (Altair, Michigan, USA), a high-performance 
finite element pre-processor. The FEA of the 3D meshed model was 
performed using Ansys v19.0 (Ansys, Inc, USA). Mesh convergence was 
verified, and a maximum edge length of 2 mm was considered (Awal & 
Faisal, 2024). The FE models generated from the dataset comprised an 
average of 18,151 nodes (ranging from 16,467 to 23505) and an average 
of 163,360 elements (ranging from 148,205 to 211,554).

2.1.4. Inhomogeneous material distributions
The study employed an isotropic and inhomogeneous material 

model. Each voxel in the QCT images was associated with bone density 
represented in Hounsfield Units (HU) (Faisal & Luo, 2017; Schileo, 
Taddei, Cristofolini, & Viceconti, 2008). This correlation was achieved 
through element-wise mapping of HU (Fig. 3c) using the free open- 
source software Bonemat v3.0 (Taddei, Pancanti, & Viceconti, 2004; 
Taddei, Schileo, Helgason, Cristofolini, & Viceconti, 2007; Zannoni, 
et al., 1999). Previous experimental data established a power-law 

Fig. 2. Workflow of QCT-based FEA from DICOM image dataset to strain distribution.

Table 1 
Demographic overview of the patient dataset considered in this study.

Mean (Min-Max) Std. Dev.

Number of patients 97 −

Male 52 −

Female 45 −

Age (year) 64.93 (50–86) 8.48
Weight (kg) 83.94 (51.7–148.6) 16.72
Height (cm) 157.2 (145.3–193.2) 6.99

Std. Dev.: Standard Deviation

Fig. 3. (a) 3D femur reconstruction from 2D DICOM images, (b) FE meshed model after mesh convergence, and (c) Element-wise mapping of inhomogeneous 
materials distributions in femur using Bonemat v3.0 (Zannoni, Mantovani, & Viceconti, 1999).
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relationship between Young’s modulus and apparent density (Gislason, 
et al., 2014). The empirical relationships described in Eqs. (1) to (4)
exhibited a stronger correlation with experimental data, leading to their 
adoption for assigning inhomogeneous material properties in this study 
(Awal & Faisal, 2024; Faisal & Luo, 2016; Marco, Giner, Caeiro-Rey, 
Miguélez, & Larraínzar-Garijo, 2019). 

ρQCT = 0.00079114 × HU − 0.00382144
(
g/cm3) (1) 

ρash = 0.877 × ρQCT +0.0789
(
g/cm3) (2) 

ρapp =
ρash

0.6
(
g/cm3) (3) 

E = 10500 × ρ2.29
app (MPa) (4) 

where HU represents BMD, ρash is the ash density, and E is the modulus 
of elasticity. Poisson’s ratio 0.4 was considered for all directions (Awal & 
Faisal, 2024; Faisal & Luo, 2016).

2.1.5. Loading and boundary conditions
Fall is an uncontrolled event, and a sideways fall can occur in a 

vareity of orientations. To simulate potential sideways falling scenarios 
and accommodate various femur positions, nine loading configurations 
were designed to apply force onto the greater trochanter. These con-
figurations represented different sideway fall postures by simulta-
neously adjusting the orientation of the loading angle (α) on the coronal 
plane relative to the shaft axis and the angle (β) on the transverse plane 
relative to the neck axis, as depicted in Fig. 4a (Awal & Faisal, 2024). 
The specified angles (Table 2) on each plane were determined based on a 

typical fall orientation, and the critical angle, where the maximum 
number of femoral fractures occurred and observed in prior experi-
mental studies (Aldieri, et al., 2022; Bessho, et al., 2004; Ford, Keaveny, 
& Hayes, 1996; Grassi, et al., 2012; Nishiyama, Gilchrist, Guy, Cripton, 
& Boyd, 2013; Pinilla, Boardman, Bouxsein, Myers, & Hayes, 1996). The 
patient-specific load, Pfall, required to simulate a sideways fall from a 
standing height, was then calculated using Eq. (5) (Robinovitch, Hayes, 
& McMahon, 1991; Yoshikawa, et al., 1994). 

Pfall = 8.25 × w ×

(
h

170

)1 /2
(N) (5) 

where w and h are the weight and height of a patient, respectively.
In each loading scenario, the distal end of the proximal femur was 

fixed in all directions except for the rotational degree of freedom along 
the y-axis, representing the hinge joint (knee) at the femur’s distal end 
(Altai, Qasim, Li, & Viceconti, 2019; Yano, et al., 2022). The trans-
lational degrees of freedom at the femur head were constrained, 
allowing rotation in the x, y, and z directions to replicate the ball-and- 
socket joint between the femur head and acetabulum. The load due to 
fall was applied to the greater trochanter (Fig. 4b).

2.1.6. Strain and FRI calculation
A linear FEA was performed in this study as the femur bone behaves 

linearly elastic up to failure during loading conditions (Cristofolini, 
Juszczyk, Martelli, Taddei, & Viceconti, 2007; Grassi, et al., 2012; 
Juszczyk, Cristofolini, & Viceconti, 2011). In addition, the femur ex-
hibits brittle behavior that may be better represented by the maximum 
stress–strain criteria than the magnitude of stress and strain (von Mises 
stress/strain criteria) (Cristofolini, et al., 2007; Doblaré, Garcıa, & 
Gómez, 2004). Schileo et al. (Schileo, et al., 2008) and other studies 
(Altai, et al., 2019; Marco, et al., 2019; Testi, Viceconti, Cappello, & 
Gnudi, 2002) showed that principal strain-based FEA analysis could 
correctly estimate fracture risk. Hence, in this study, we have considered 
the maximum principal strain-based criteria to estimate the FRIs, which 
are defined based on the absolute maximum tensile and compressive 
strains (Bayraktar, et al., 2004; Schileo, et al., 2008) as follows: 

FRI =
εT

max
0.0073

(6) 

FRI =
|εc

max|

0.0104
(7) 

Fig. 4. (a) Representation of loading angles α and β on coronal and transverse planes, respectively, during sideways fall, and (b) Boundary and loading conditions at 
the distal end, femur head, and greater trochanter of a femur during FEA (Awal & Faisal, 2024).

Table 2 
A number of possible fall cases represented by the variations of loading angle (α)
on the coronal plane and (β) on the transverse plane.

Sideways fall cases α (degree) β (degree)

αβ_0/-15 0 − 15
αβ_0/0 0 0
αβ_0/15 0 15
αβ_15/-15 15 − 15
αβ_15/0 15 0
αβ_15/15 15 15
αβ_30/-15 30 − 15
αβ_30/0 30 0
αβ_30/15 30 15
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where εT
max and εc

max are the maximum principal strain in tension and 
compression, respectively. The FRI obtained via our developed QCT- 
based FEA was validated earlier (secondary validation) (Awal & 
Faisal, 2024) with previously published FE results by Kheirollahi et al. 
(Hossein Kheirollahi & Yunhua Luo, 2015; H Kheirollahi & Y Luo, 2015), 
who used a patient cohort (subset) from the same dataset and full femur 
models. We showed this validation in our prior work (Awal & Faisal, 
2024).

2.2. Prediction of hip fracture risk via CatBoost model

The ML workflow for predicting hip (a.k.a femoral) fracture risk was 
implemented in four phases such as data acquisition (extracting features 
and target variable from QCT-based FEA), feature engineering, model 
training and testing, and model (performance) evaluation (Fig. 5).

2.2.1. Data acquisition
The input dataset, consisting of demographic and clinical parame-

ters, bone anatomy and morphology, and loading orientations (Fig. 5), 
were extracted from QCT dataset, and its corresponding FE model. The 
key variables influencing the FRI (Awal, et al., 2022; Awal & Faisal, 
2021; Ford, et al., 1996; Pinilla, et al., 1996) were prioritized as features. 
Clinical and demographic data, including age, sex, and weight, were 
extracted from the QCT dataset in DICOM format, and a weighted- 
average BMD value was calculated based on the BMD distributions in 

Fig. 5. ML workflow for predicting patient-specific hip fracture risk using FRI as the target variable.

Table 3 
Feature and target variable for predicting fracture risk with strain-based FRI as 
the target variable.

Feature Target

Clinical and demographic 
variables

Anatomical 
variables

Loading 
variables

FRIAge FNA α
Sex FNW β
Weight TMA 
BMD FNAL 

Fig. 6. Representation of a 3D point cloud obtained from a 3D femur mesh.
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femur.
Anatomical and morphological features were derived mainly from 

2D projections of each femur on the coronal plane such as Femoral Neck 
Axis Length (FNAL), Femoral Neck Width (FNW), True Moment Arm 
(TMA), and the horizontal component of FNAL on transverse plane. The 
Femoral Neck Angle (FNA), defined as the angle (θ) between the proximal 
femoral shaft axis and the femoral neck axis, was also considered (Awal 
& Faisal, 2024; Fajar, Taufan, Syarif, & Azharuddin, 2018).

The target variable, FRI, was obtained from QCT-based FEA (Fig. 5). 
An FRI value greater than 1 indicates a higher possibility of hip fracture. 
Therefore, the study used a binary classification “fracture risk” with 
FRI > 1, encoded as 1 and “no fracture risk” with FRI⩽1, encoded as 0. 
Table 3 summarizes all the categorical features and target variables 
considered in this study.

2.2.2. Feature engineering
The dataset was preprocessed before use in the machine learning 

model. To improve the performance of the predictive models, feature 
engineering comprising cleaning, correlation analysis, data splitting, 
and feature scaling was conducted during the data preprocessing step to 
reduce the complexity of data and improve model accuracy.

Data cleaning
The FRI values obtained from the QCT-based FEA exhibited a posi-

tively skewed distribution and significant dispersion. In this work, the 
FRI beyond 1.5 times the interquartile range (represented by max) were 
considered outliers and removed from the dataset. The excluded data 
includes the instance of two femurs from two patients. Hence, 192 out of 
194 femurs were considered in this analysis after removing the outliers.

Correlation analysis
The association between the features was analyzed using the Pearson 

correlation coefficient to evaluate if the features have any form of as-
sociation with each other that could affect the target variable.

Data splitting
The dataset was split with an 80:20 ratio for the training and testing 

of CatBoost model. Additionally, to optimize and increase the robustness 
of the model by reducing data bias, the training data was further split 
into 5 folds in the same 80:20 ratio (Little, et al., 2017). To prevent data 
leakage, splitting was done based on patient’s unique identifier.

Feature scaling
Feature scaling is another crucial step towards standardizing the 

features to increase the predictability of a model. In this step, the Min-
Max scaler was used to scale the features. MinMax transforms the data 

Table 4 
Feature and target variables for strain visualization via ML surrogate.

Feature Target

Clinical and 
demographic 
variables

Anatomical 
variables

Loading 
variables 1st and 3rd 

principal strain

BMD (node-wise 
average values)

x-coordinate Pfall

y-coordinate α
 z- coordinate β

Fig. 7. Workflow of patient-specific feature engineering.
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into a 0 to 1 range, considering the minimum and maximum values of 
each feature.

2.2.3. Model training and testing
To train the CatBoost model, k-fold cross-validation (k = 5) was 

used, and the model was iterated multiple times, tuning hyper-
parameters by a random search method until an optimized model was 
built.

2.2.4. Model (performance) evaluation
To evaluate the performance of the supervised CatBoost model, 

performance metrics such as precision, recall (sensitivity), accuracy, and 
Area Under Receiver Operating Characteristics (AUROC) curve were 

considered (Aldieri, et al., 2024; Erickson & Kitamura, 2021; Murphy, 
et al., 2022). In this study, possibility of fracture, when FRI > 1, is 
denoted as 1, and the possibility of no fracture, when FRI⩽1, is denoted 
as 0. Considering QCT-based FE outcomes as the ground truth, the error 
metrics in this work are as follows, 

Precision =
TP

TP + FP
(8) 

Sensitivity(Recall) =
TP

TP + FN
(9) 

Accuracy =
TP + TN

TP + FP + TN + FN
(10) 

where True Positive (TP) represents a true fracture risk correctly pre-
dicted as fracture risk, and True Negative (TN) represents the absence of 
fracture risk correctly predicted as no fracture risk by the ML model. 
False Positive (FP) indicates when the ML model falsely predicts risk, 
while there is no fracture risk in the ground truth, and False Negative (FN) 
denotes the ML model falsely predicting no fracture risk when ground 
truth indicates a fracture risk. Additionally, SHapley Additive exPlana-
tions (SHAP) (Lundberg & Lee, 2017) was used to explain the contri-
butions of the features to the prediction results. It produces a plot 
showing the important features and their impacts (sensitivity) on the 
model’s prediction.

2.3. Strain visualization via ML surrogate

2.3.1. Data preparation
The nodal coordinates (x-, y-, and z-coordinates) (Fig. 6) and asso-

ciated bone material property–BMD (an average BMD value of the 
shared elements) was obtained for each node of the FE meshed models to 
accommodate the input features for predictively visualizing the strain 
distributions in the proximal femur. In addition, both magnitude of load 
and loading directions (α and β) were considered as input features in this 
workflow. Table 4 summarizes all the input features and target variables 
to surrogate strain distributions. For the predictive visualization of 
strain distributions to identify the probable fracture location in a femur, 
the nodal strain values obtained from the QCT-based FEA (described in 
Section 2.1) was considered as the target in this workflow.

2.3.2. Feature engineering
To improve the performance of the visualization, feature engineering 

was conducted to handle categorical variables using one-hot encoding, 
data scaling and sorting, feature augmentation, data cleaning, and splitting 
(Fig. 7).

Fig. 8. Performance metrics (precision, recall, and accuracy) (a) and AUROC curve (b) of the CatBoost model in predicting hip fracture risk based on FRI. Class 0 and 
class 1 represent the possibility of no fracture and the possibility of fracture, respectively.

Fig. 9. The waterfall plot of the SHAP values to interpret the features that most 
contribute to the prediction of hip fracture risk. Red and blue colors mean 
higher and lower values of a feature, respectively.

Table 5 
Mean R − squared,MAE, and NMAE, while predicting (visualizing) strain dis-
tributions in a femur bone. All results are shown in mean ± std. dev.

R-squared MAE NMAE (%)

1st principal strain 0.73 ± 0.13 1.65E-4 ± 8.53E-5 4.14 ± 1.35
3rd principal strain 0.76 ± 0.13 2.85 ± 1.19E-4 2.86 ± 1.18
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One-hot encoding
The categorical feature—loading directions in terms of angle—α and 

β, was converted into numerical values via one-hot encoding. One-hot 
encoding is considered to be an efficient way to handle categorical 
variables, leading to higher performance compared to binary and hash 
encoding (Seger, 2018).

Data scaling and sorting
Even though the dataset was initially organized in a tabular form, the 

data was further grouped patient-wise by assigning a unique identifier. 
Applying feature engineering on the complete dataset without making it 
patient-specific would lead to information sharing among the entire 
dataset comprising 97 patients, which could result in overfitting of the 
ML model. Hence, the features were normalized, considering one femur 
at a time, as shown in Fig. 7. After normalizing the initial feature vector, 
the feature set was sorted based on the nodal coordinates. The sorting 
was done sequentially on the z-axis, y-axis, and x-axis, respectively. 
Sorting the feature based on coordinates arranged them to start 
sequentially from the lowest point to the highest point of a femur.

Feature augmentation
To enhance performance, several features derived from the existing 

ones were added. New features, including the mean and standard de-
viation of a node’s x-, y-, and z-coordinates, were incorporated into the 
feature vector. Furthermore, to analyze the trend, eliminate anomalies, 
and smooth the data, moving averages of the x-, y-, and z-coordinates, as 
well as stiffness, were calculated using a window size of 3. The moving 
standard deviation was also computed for these features. Femur-specific 
feature augmentation was applied to ensure that the coordinates and 
stiffness of one femur were not imputed onto another, thereby pre-
venting overfitting of the model.

Data Cleaning
After feature augmentation, Not-a-Number (NaN) values, which 

represent undefined numbers in floating-point calculations, were 
removed from the dataset. A row containing a NaN value in any column 
was completely removed. It is important to note that rows containing 
NaN values comprised less than 0.05 % of the entire dataset.

Data splitting
The augmented and cleaned dataset was randomly split into training 

and testing datasets in the 80:20 patient ratio. 80% of the patients in 
training dataset was further divided into 5-fold cross-validation to 
optimize the model and eliminate data bias. After optimizing the model, 
the patients in testing dataset were used to test the model performance 
in visualizing the strain distributions on the unseen dataset.

2.3.3. Model training and testing
Training of the CatBoost model for strain visualization was per-

formed using 5-fold cross-validation using random search method. An 
optimized CatBoost model was obtained after 7,000 iterations, 
maximum tree depth of 10, learning rate of 0.055 and Root Mean Square 
Error (RMSE) as a loss function. Hyperparameters were tuned to get an 
optimized model performance (Hu, et al., 2022; Kaviani, Han, & Sohn, 
2022).

2.3.4. Model (performance) evaluation
After training, the CatBoost model was tested with patients from the 

testing dataset to measure the performance of the ML model on unseen 
data. After obtaining the optimized CatBoost model, the prediction was 
done by taking one femur at a time from the test dataset. Datapoint 
belonging to single femur was fed into optimized ML model and strain 

Fig. 10. Comparison of actual strain distributions obtained via QCT-based FEA (ground truth) and predicted strain from the adopted ML method, focusing on the 
orientation of the loading angle (α = 0o) on the coronal plane with respect to the shaft axis and the angle (β = [ − 15o, 0o, 15o] ) on the transverse plane with respect to 
the neck axis.
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values were predicted. The ML model provided the 1st and 3rd principal 
strains along with R-squared value, Mean Absolute Error (MAE) and 
Normalized Mean Absolute Error (NMAE). The prediction and evaluation 
were done for all patients in the test dataset, and an average was taken to 
analyze the model performance.

2.4. Testbed description

The testing environment for our experiments involved a cluster 
computer with an Intel ®Xeon ® E5-2600 v4 CPU running at 2.00 GHz, 1 
Tesla GPU with 16 GB of RAM, and 256 GB of RAM. We chose to use the 
Python3 (Van Rossum & Drake, 2009) programming language due to its 
ease of use and the availability of relevant libraries. For the imple-
mentation of our model, several Python libraries were incorporated in 
this work. We used TensorFlow (Abadi, et al., 2016) and the SciPy 
(Virtanen, et al., 2020) library for scientific and technical computing. 
We also used Skimage, which is a collection of algorithms for image 
processing and computer vision, as well as the libraries associated with 
Google Colab, the cloud-based platform for data analysis and machine 
learning, and Visual Studio Code, which is widely used for Python 
development.

3. Results

3.1. Performance evaluation of hip fracture risk assessment

To evaluate the performance of the CatBoost model for predicting hip 
fracture risk based on FRI, the performance metrics—precision, recall, 
and accuracy—were determined. As shown in Fig. 8a, the precision, 

recall (sensitivity), and accuracy of the model are 0.78, 0.77, and 0.76, 
respectively. The model’s performance indicates its ability to predict 
fracture risk with considerable accuracy as well as a low risk of missing 
actual hip fracture cases. To compare the overall performance of the 
model, AUROC curves were also depicted in Fig. 8b. It illustrates the 
balance between the true positive rate and the false positive rate 
anticipated by the model, aiding in the assessment of its performance. 
The higher AUROC value of 0.82 for CatBoost demonstrates its feasi-
bility for fracture risk prediction.

While the performance metrics help us understand the overall per-
formance of the adopted model, we need more insights into how 
different features impact the models’ predictability. The SHAP plot 
(Fig. 9) shows the important features and their impacts on the CatBoost 
model’s predictions, identifying β and BMD as the most important fea-
tures in predicting fracture risk, followed by the other features.

3.2. Performance evaluation strain visualization

After predicting the fracture risk, a new CatBoost model was trained 
and optimized with 7,000 iterations, a learning rate of 0.055, a 
maximum tree depth of 10, and RMSE as the loss function. Table 5 shows 
the mean R − squared, MAE, and NMAE, while predicting strain distri-
butions in a femur bone.

4D scatter plots were constructed to visualize the strain distributions 
in the proximal femur and to visually identify probable fracture loca-
tions. Figs. 10-12 compare the strain distributions in the proximal femur 
obtained via QCT-based FEA (ground truth) and those obtained via the 
supervised CatBoost model (prediction). It is evident that the strain 
visualization qualitatively exhibits a high correlation between the 

Fig. 11. Comparison of actual strain distributions obtained via QCT-based FEA (ground truth) and predicted strain from the adopted ML method, focusing on the 
orientation of the loading angle (α = 15o) on the coronal plane with respect to the shaft axis and the angle (β = [ − 15o,0o,15o] ) on the transverse plane with respect 
to the neck axis.
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ground truth and the prediction.
To further evaluate the performance of the regression (CatBoost) 

model, data visualization was performed via scatter plot to compare the 
actual strain and predicted strain. Fig. 13 shows the comparison of 
actual vs. predicted 1st principal strain, whereas Fig. 14 shows similar 
plots for 3rd principal strain for nine different loading conditions. The 
moderately high coefficient of determinant 

(
R2) values show the 

model’s ability to predict the strain close to the actual strain.

4. Discussion

This research focuses on developing ML-based FEA surrogate to 
assess subject-specific hip fracture risk due to sideways fall from 
standing height, which typically happened to geriatric people. The 
research objective was primarily motivated to elude the complex and 
time-consuming scientific computing process—QCT-based FEA as well 
as the requirement for expensive software. In this work, QCT-based FEA 
(Awal & Faisal, 2024) was used to construct the training dataset and 
obtain the ground truth, because scientific computation via classical 
computational models has proven its ability to develop accurate ground 
truth data, reducing the need for conducting experiments. In particular, 
there exists a high correlation between the QCT-based FEA and experi-
ments, while evaluating femur strength (Black, et al., 2008; D. Drag-
omir-Daescu, 2011; Engelke, van Rietbergen, Zysset, & metabolism, 
2016).

In this work, CatBoost model was applied separately to predict hip 
fracture risk and to visualize strain distributions due to the distinctive 
input features of the training datasets and different target variables 
(Table 3 and Table 4). FRI was considered the target variable to assess 

the hip fracture risk, whereas 1st (tensile) and 3rd (compressive) prin-
cipal strains were the target variables for visually identifying the prob-
able locations of fracture by generating an ML surrogate of strain 
distributions. A femur inherently exhibits brittle behavior that may be 
better represented by the maximum stress–strain criteria than by the 
magnitude of stress and strain (von Mises stress/strain criteria) 
(Cristofolini, et al., 2007; Doblaré, et al., 2004). Schileo et al. (Schileo, 
et al., 2008) and other studies (Altai, et al., 2019; Marco, et al., 2019; 
Testi, et al., 2002) showed that principal strain-based FEA analysis could 
correctly estimate fracture risk. Hence, in this study, we considered the 
maximum principal strain-based criteria to estimate the FRIs, which are 
defined based on the absolute maximum tensile and compressive strains 
(Bayraktar, et al., 2004; Schileo, et al., 2008). Furthermore, the adopted 
ML model was optimized using 5-fold cross-validation to ensure the 
model’s robustness by reducing data bias. For both cases (fracture risk 
prediction and strain visualization), the performance of the optimized 
CatBoost model was tested with an unseen cohort of patients (testing 
dataset) that had never been introduced during the training phase. This 
signifies that the developed ML pipeline is robust, and we argue that the 
pipeline is able to work with any dataset with convincing performance.

While predicting the fracture risk, the precision exhibits the model’s 
ability to predict the true fracture risk out of all predicted fracture risk, 
and the CatBoost model demonstrated good prediction ability in 
assessing fracture risk. The recall (sensitivity) value of the ML model 
suggests that the prediction of false negatives is low, indicating the 
model has a low chance of falsely predicting fracture risk. Accuracy was 
also obtained to ensure the overall performance of the ML model, with 
its value reflecting the prediction of true negative and true positive 
cases. The accuracy of CatBoost model implies its ability to correctly 

Fig. 12. Comparison of actual strain distributions obtained via QCT-based FEA (ground truth) and predicted strain from the adopted ML method, focusing on the 
orientation of the loading angle (α = 30o) on the coronal plane with respect to the shaft axis and the angle (β = [ − 15o,0o,15o] ) on the transverse plane with respect 
to the neck axis.
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predict 76% of instances of the possibility of fracture or no fracture. This 
observation is further supported by the AUROC curve (Fig. 8b). The AUC 
value of 0.81 indicates that this ML model is capable of distinguishing 
the probability of fracture (positive cases) from no fracture (negative 
cases). Therefore, this study suggests that CatBoost model trained with 
QCT-based FE results can be considered as an effective data-driven 
predictive tool for assessing the future possibility of hip fracture. It 
should be noted that, prior to selection, this CatBoost model was 
compared with other ML models (such as logistic regression, SVC, 
XGBM, RF, and DT) (Awal et al., 2025). The greater performance of the 
CatBoost model is likely attributed to its inherent ability to handle 
categorical variables like sex, α, and β.

SHAP plot was considered to analyze the effect of features or sensi-
tivity of the features that impact fracture risk prediction the most 
(Fig. 9). The SHAP analysis of the CatBoost model demonstrates that the 
model learns significantly from the variable β, the loading angle/di-
rection on the transverse plane with respect to the neck axis. Addition-
ally, the global interpretability of SHAP values also indicates whether a 
feature has a positive or negative influence on predictions. Accordingly, 
the positive impact of high β value and negative impact of low β value 
show that increasing the angle of rotation increases the hip fracture risk.

The primary objective of strain visualization is to visually identify 
the fracture-prone region. A qualitative (visual) comparison between the 
ground truth (obtained via QCT-based FEA) and predicted strain dis-
tributions (Figs. 10-12) demonstrates that our optimized CatBoost model 
is able to convincingly predict the strain distributions (visually) with an 
acceptable accuracy. This will further help identify the probable fracture 

location along with fracture risk assessment and enable informed plan-
ning for taking preventive measures to prevent hip fracture if someone 
falls.

Furthermore, we also used performance metrics (Table 5) to quan-
titatively assess the performance of strain visualization. Accordingly, the 
R − squared values of 0.73 and 0.76, while predicting 1st and 3rd prin-
cipal strain, respectively, resembles the moderate performance of the 
CatBoost model in predicting strain distributions within a 3D proximal 
femur. The median R − squared values of 0.76 for 1st principal strain and 
0.81 for 3rd principal strain delineate that the strain distributions are 
accurately surrogated for most of the femurs of unseen patients. The 
minimal mean errors between the actual and predicted principal strains 
(Table 5) demonstrate that the predicted strain values are close to the 
actual values. Additionally, less than 5 % of mean NMAE describes an 
overall high reliability on predicted strain values. However, the objec-
tive of showing the loss function is to quantitively evaluate the perfor-
mance of strain visualization, even though this error metric may not 
truly reflect the primary objective of strain visualization. Nevertheless, 
high R − squared, low MAE and NMAE values, and the qualitative simi-
larities in strain distributions (visualization) between the predicted and 
actual strain distributions delineate that an optimized CatBoost model 
can generate a surrogate model of QCT-based FEA in assessing hip 
fracture risk. Similar interpretation can be perceived from the scatter 
plots obtained from the actual and predicted 1st and 3rd principal strains. 
Points clustered tightly around the diagonal line indicate a strong cor-
relation between predictions and actual values, suggesting good model 
performance. However, a low coefficient of determination on predicting 

Fig. 13. Scatter plot comparing actual 1st principal strain obtained via QCT-based FEA (ground truth) vs predicted strain from the adopted ML method at nine 
different loading conditions: (a) αβ_0/-15, (b) αβ_0/0, (c) αβ_0/15, (d) αβ_15/-15, (e) αβ_15/0, (f) αβ_15/15, (g) αβ_30/-15, (h) αβ_30/0, (i) αβ_30/15.
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3rd principal strain at loading condition αβ_0/15 showing ML model 
inability to predict strain to outliers. However, it could be minimized by 
training ML models with a larger dataset and with a wide range of strain 
distributions.

Assessing hip fracture risk considering stress- or strain-dependent 
FRI by QCT-based FEA is a time-consuming and tedious process that 
typically requires highly skilled human resources and expensive soft-
ware, thereby limiting the application of this physics-based modeling in 
clinical and pre-clinical domains. Data-driven ML-based predictive 
modeling can be a potential alternative to FEA without compromising 
accuracy, which can be significantly enhanced by adding variability in 

patient dataset, input features, and increasing data size (big data) in the 
training dataset. Performance analysis of the CatBoost model with 
varying the size of training dataset clearly substantiates the fact that 
increasing the number of patients in the training dataset will further 
improve the performance of the ML model (Fig. 15).

The proposed data-driven framework exhibits encouraging perfor-
mance but certainly with some limitations. The ML-driven framework 
was built upon data obtained from one geographical region, which limits 
the model’s versatility. For robustness, the model needs to be trained 
with data from different ethnicities and geographical locations. The 
current dataset may not truly reflect the elderly population as it includes 
patients well below 65 years of age. A dataset of older patients aged 65 
and above may train the ML model more appropriately for the popula-
tion group. However, the inclusion of younger adults increases the 
variability, which might be beneficial for developing a generalized ML 
model. Most importantly, a dataset with clinically diagnosed osteopo-
rosis or information on prior fractures will increase the efficiency of 
model training. The major limitation of this work is the smaller dataset, 
which restricts achieving higher accuracy. Data augmentation could 
solve the limitation of limited dataset, increasing the accuracy of model. 
However, data augmention was avoided in this study considering that 
synthetic data may not represent true fall case scenario. On predicting 
strain distributions, an ML model trained on dense point cloud could 
increase the accuracy but could cost more computational resource for 
training and testing the model.

In conclusion, we have presented an ML-based pipeline integrated 
with QCT-based FEA (a classical computational modeling tool) for 

Fig. 14. Scatter plot comparing actual 3rd principal strain obtained via QCT-based FEA (ground truth) vs predicted strain from the adopted ML method at nine 
different loading conditions: (a) αβ_0/-15, (b) αβ_0/0, (c) αβ_0/15, (d) αβ_15/-15, (e) αβ_15/0, (f) αβ_15/15, (g) αβ_30/-15, (h) αβ_30/0, (i) αβ_30/15.

Fig. 15. Correlation of data size (number of patients) and the performance of 
the CatBoost ML model.
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predicting hip fracture risk and visualizing strain as a surrogate FE 
model to identify the probable fracture location. The sequential process 
of QCT-based FEA typically involves 3D femur reconstruction using 
high-end medical image processing software and commercial FE solver, 
making the process expensive and time-consuming. Therefore, compu-
tational models are often limited in clinical set up. Hence, this proposed 
study shows the potential of ML-based modeling to predict the risk of hip 
fracture, bypassing all complicated steps involved in traditional 
computational modeling approaches. ML models have been widely used 
in a variety of biomedical and clinical applications including cancer 
screening, genomics classification, DNA sequencing, and structural 
analysis of proteins (Bartoszewicz, Seidel, Rentzsch, & Renard, 2020; 
Yue Cao, Geddes, Yang, & Yang, 2020; Yongchun Cao, et al., 2023; Che, 
Liu, Rasheed, & Tao, 2011; Hu, et al., 2022; Lorente, et al., 2017; Tan & 
Gilbert, 2003), but they have been very limitedly applied in bone frac-
ture. The convincing performance of CatBoost model with such limited 
dataset shows an enormous feasibility of ML-based modeling in pre-
dicting hip fracture risk accurately in a cost-effective way. Lastly, the 
viability of ML models for predicting hip fracture risk and visualization 
suggests the enormous potential of ML-based modeling as an alternative 
to complex and expensive QCT-based FEA.
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